

A simple folder structure for bioinformatics projects

Git* commands for revision control

Command	Purpose	Example
	Start tracking a project (run once	
git init	inside project_name/)	git init
git add <file></file>	Stage files to be tracked (use . for all)	git add 02_scripts/
git commit -m "message"	Save a snapshot with a short message	git commit -m "added QC script"
	Connect local project to a remote	
git remote add origin <url></url>	repository (GitHub, GitLab, etc.)	git remote add origin https://github.com/user/project.git
git push origin main	Upload your commits to the remote	git push origin main
	Bring down the latest version from the	
git pull origin main	remote	git pull origin main

^{*}Use Git only for small text files (scripts, notes, configs). Do not put raw data, results, or large files under version control.

Rosen Center for Advanced Computing

Getting started workflow (step-by-step example)

1. Start a project

Make the folder: mkdir 20250916_AirwayStudy_RNAseq

o Add subfolders: mkdir 00_meta 01_data/raw 01_data/processed 02_scripts 03_analysis 04_results 99_logs

2. Add notes

Create 00_meta/README.txt:

Project: Airway Study Demo

Date: 2025-09-16 PI: Dr. Example

Goal: Demonstration of project organization

3. Save your first script

Put into 02_scripts/01_qc-fastqc.sh

Make it executable: chmod +x 01_qc-fastqc.sh

4. Run and capture outputs

- Save QC reports in 03_analysis/a_fastqc
- Move polished plots into 04_results/figures

5. Back up with Git

- o git add 00_meta/ 02_scripts/
- o git commit -m "Initial setup + QC script"

Best practices

Do's	Don'ts
Keep raw data read-only.	Don't rename or overwrite raw files.
Number scripts logically (01, 02,).	Don't mix results into the scripts/ folder.
Commit scripts + notes regularly.	Don't commit large FASTQ/BAM files to Git.
Always document what changed.	Don't keep everything in your home directory.
Use relative paths in your scripts.	Don't use spaces in file or folder names.
Log computational outputs and errors.	Don't manually edit intermediate results.
Have a backup copy of your raw data	Don't/minimize hardcoding parameters in scripts.

Keep your raw data safe, keep your scripts under version control, and keep your results organized, so anyone (including future you) can understand and reproduce your work.